Explorer Variations , approximation , and low regularity in one dimension
نویسنده
چکیده
We investigate the properties of minimizers of one-dimensional variational problems when the Lagrangian has no higher smoothness than continuity. An elementary approximation result is proved, but it is shown that this cannot be in general of the form of a standard Lipschitz “variation”. Part of this investigation, but of interest in its own right, is an example of a nowhere locally Lipschitz minimizer which serves as a counter-example to any putative Tonelli partial regularity statement. Under these low assumptions we find it nonetheless remains possible to derive necessary conditions for minimizers, in terms of approximate continuity and equality of the one-sided derivatives.
منابع مشابه
Approximation theorems for fuzzy set multifunctions in Vietoris topology. Physical implications of regularity
n this paper, we consider continuity properties(especially, regularity, also viewed as an approximation property) for $%mathcal{P}_{0}(X)$-valued set multifunctions ($X$ being a linear,topological space), in order to obtain Egoroff and Lusin type theorems forset multifunctions in the Vietoris hypertopology. Some mathematicalapplications are established and several physical implications of thema...
متن کاملRegularity through Approximation for Scalar Conservation Laws∗
In this paper it is shown that recent approximation results for scalar conservation laws in one space dimension imply that solutions of these equations with smooth, convex fluxes have more regularity than previously believed. Regularity is measured in spaces determined by quasinorms related to the solution’s approximation properties in L1(R) by discontinuous, piecewise linear functions. Using a...
متن کاملSparse Tensor Product Wavelet Approximation of Singular Functions
On product domains, sparse-grid approximation yields optimal, dimension-independent convergence rates when the function that is approximated has L2-bounded mixed derivatives of a sufficiently high order. We show that the solution of Poisson’s equation on the n-dimensional hypercube with Dirichlet boundary conditions and smooth right-hand side generally does not satisfy this condition. As sugges...
متن کاملUvA - DARE ( Digital Academic Repository ) Sparse tensor product wavelet approximation of singular functions
On product domains, sparse-grid approximation yields optimal, dimension-independent convergence rates when the function that is approximated has L2-bounded mixed derivatives of a sufficiently high order. We show that the solution of Poisson’s equation on the n-dimensional hypercube with Dirichlet boundary conditions and smooth right-hand side generally does not satisfy this condition. As sugges...
متن کاملOn the dimension of max-min convex sets
We introduce a notion of dimension of max-min convex sets, following the approach of tropical convexity. We introduce a max-min analogue of the tropical rank of a matrix and show that it is equal to the dimension of the associated polytope. We describe the relation between this rank and the notion of strong regularity in max-min algebra, which is traditionally defined in terms of unique solvabi...
متن کامل